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Abstract—In this paper, we propose a robust control strategy for
reducing system frequency deviation, caused by load fluctuation
and renewable sources, in a smart microgrid system with attached
storage. Frequency deviations are associated with renewable en-
ergy sources because of their inherent variability. In this work, we
consider a microgrid where fossil fuel generators and renewable
energy sources are combined with a reasonably sized, fast acting
battery-based storage system. We develop robust control strate-
gies for frequency deviation reduction, despite the presence of sig-
nificant (model) uncertainties. The advantages of our approach
are illustrated by comparing system frequency deviation between
the proposed system (designed via synthesis) and the reference
system which uses governors and conventional PID control to cope
with load and renewable energy source transients. All the simula-
tions are conducted in the Matlab™ and Simulink™ environment.
Index Terms—Energy storage, microgrid, power systems, smart

grids.

I. INTRODUCTION

M ICROGRIDS are essentially modern, small-scale
(electrical) power distribution systems. They afford nu-

merous benefits, such as enhancing system reliability, reducing
capital investment and carbon footprint, and diversifying
energy sources [1]. Microgrids contain several generators,
whose sizes may range from several tens of kilowatts to a few
megawatts[2]. They are different from traditional centralized
electricity networks, which transmit vast amounts of electrical
energy across long distances at very high voltages. However,
they are similar to utility scale power distribution grids, which
generate, transmit and regulate electricity to the consumer
locally. To improve the efficiency of microgrids and to reduce
fossil fuel usage and pollution, renewable energy sources
may be integrated with traditional microgrids. Renewable
energy sources include photovoltaic power, hydro power and
wind power. These are clean and abundantly available energy
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sources. Due to the cost effectiveness of wind turbine genera-
tion (WTG), it is one of the fastest growing clean power sources
[3]. However, since the output power of WTG is proportional
to the cube of the (varying) wind speed, it significantly impacts
system stability, and can cause large frequency and voltage
(F&V) deviations in a microgrid [4]. In this paper we will focus
on control of (real) power to reduce frequency deviations.
For critical installations such as military bases, security con-

cerns have increased interest in utilizing microgrids that allow
the facility to operate in islanded mode for extended periods
with renewable energy sources involved. It is critical to main-
tain the F&V deviations within a small range to satisfy military
operating requirements. High-speed, grid-attached storage sys-
tems such as batteries have been proposed for reducing F&V
variability. However, due to high cost, battery sizes must be
minimized and therefore may saturate during transients, aggra-
vating F&V deviations. In such situations, conventional con-
trol approaches are no longer sufficient to constrain these de-
viations within a small range, and at the same time limit the
battery size. More sophisticated robust control algorithms are
needed to achieve better performance despite unexpected dis-
turbances and model uncertainties. A variety of control methods
have been proposed for tackling this kind of problem. Propor-
tional-Integral-Derivative (PID) control has been well studied
by a number of researchers [5], [6]. PID control methods are
well understood, but have limited ability to tradeoff overshoot,
rise time and damping oscillations. control is considered in
[3], [7]. Note that control does optimize system tradeoffs,
but robustness to model uncertainties is not addressed. Fuzzy
Logic control is utilized in [8]–[10], but it is difficult to develop
a good (simulation) model for Fuzzy Logic control, which can
facilitate fine tuning the controller. In the work proposed here,
we emphasize a robust control approach, which can simultane-
ously deliver a-priori performance guarantees, whist controlling
against inherent system uncertainties. Furthermore, we empha-
size that our work is focussed on islanded microgrids, where
a significant fraction of the energy is coming from renewable
sources, so that frequency control is a challenging problem.
Our work develops robust control strategies for both the

battery and conventional generation systems, with controllers
designed to minimize battery size while at the same time sig-
nificantly reducing frequency variation, despite variable loads
in the microgrid, and the incorporation of a WTG source. Our
controllers are designed to cope with load transients, WTG
output fluctuations, model uncertainties and measurement
noise/errors. They are compared with conventional PID control
approaches, and it is shown that relatively small amounts of
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Fig. 1. Structure of microgrid with attached storage system.

storage can dramatically decrease frequency deviation, but
only if saturation conditions are avoided by dynamically coor-
dinating storage with other generation sources, using advanced
Multi-Input-Multi-Output (MIMO) control approaches.
Following the introduction in Section I, the rest of the paper is

organized as follows. In Section II, the system configuration is
presented. Some theoretical background of -synthesis is briefly
presented in Section III. In Section IV, the -synthesis con-
troller is designed. Simulations are conducted in the Matlab™
and Simulink™ environment, and the simulation results are pre-
sented and discussed in Section V. Finally, some concluding re-
marks are presented in Section VI.

II. SYSTEM SETUP AND MODELING

A typical setup of a microgrid with storage system is shown
in Fig. 1. The energy sources include both conventional and re-
newable generation systems. On the common bus-bar are energy
sources, variable loads, and also a battery-based storage system.
The green blocks indicate that particular component is under
control for desired performance. This system can be readily ex-
tended into more complex microgrids, with additional genera-
tors, loads, bus-bars, transmission lines, and storage systems.
The essential idea is to increase the usage of renewable en-

ergy, and so reduce the fossil fuel consumption, while at the
same time maintaining system stability. Here system stability is
reflected by incurring only limited system frequency deviations,
despite the presence of significant transients. Low frequency
load transients are handled by conventional generators (utilizing
diesel or natural gas engines as their prime mover). The attached
storage system can react much more quickly to load transients,
and so it is primarily used for suppressing the high frequency
load transients caused by renewable energy sources. In order
to maintain the nominal frequency in such a system, more ad-
vanced control techniques are required to deliver the system per-
formance requirements.
In order to minimize the frequency deviation ( ), a math-

ematical model is used for system analysis and controller de-
sign. This model consists of three parts: conventional generator
(CG), storage system (SS) andWind Turbine Generator (WTG).

Fig. 2. Conventional generator (Small Power System) model [12], [13].

Fig. 3. Battery model [3].

Fig. 4. Wind turbine generator model [4].

The corresponding Simulink™models are shown in Figs. 2 – 4.
Note that in order to limit the model complexity, simple transfer
functions models are used for each of these blocks in the con-
troller design process. However these models still capture the
essential power/frequency tradeoffs in such systems. Since
is caused by the imbalance between the power generated and the
power consumed by the load, signals in the model are first nor-
malized to per-unit (pu), and then shifted to deviations around
‘0’ (corresponding physically to deviations from nominal 60
Hz [11]). Hence, the load variation, the SS output variation
and WTG output variation are denoted as: , and

respectively. These three signals are summed at the
summing block in the CG model along with the CG output vari-
ation . Note, during the charging or discharging periods,
a battery based storage system acts as load or generation corre-
spondingly.
In our model, and are controlled power devi-

ations, as shown in Figs. 2 and 3; the control signals are ‘ ’
and ‘ ’ respectively. is considered as the error signal.
The controller receives measurements ‘ ’ and outputs actua-
tion/control signals ‘ ’. Although is a controlled output,
the output is limited by a saturation block so as to prevent fast
charge and discharge. In addition, the State of Charge (SoC)
variation of the SS is modeled by integrating its output power
deviation. It is controlled indirectly by commanding .
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TABLE I
MODEL PARAMETERS.

Meanwhile, and are considered as perturba-
tions to the system in the robust controller synthesis method-
ology. There is no control over these two signals. Here, the con-
trolled outputs are used for minimizing , regardless of how
the perturbations vary. Other renewable sources can be handled
in a similar fashion.
A real wind profile is used here with a sample time of 50 ms

simulated for 500 s. The WTG actual output power ( ) is
normalized by its rated output ( ) and again shifted to de-
viations around “0” (in the linear model). is “0” unless
the angular speed of the gearbox output is higher than the syn-
chronous angular speed. A fixed pitch angle of 10 is used.
Our controller does not command the WTG, rather the WTG
produces power according to the given wind speed profile (and
hence acts as an unknown “disturbance” as far as our system is
concerned). Tip speed ratio ( ), power coefficient ( ), wind-
mill output ( ), Slip ( ) and WTG output power ( ) as
shown in Fig. 4, and are given as: ;

[14]; ; ;
,

where is the wind speed, is windmill rotor cross sec-
tion area, is synchronous angular speed, and is angular
rotor speed for a windmill [15]. All the modeling parameters
are listed in Table I.

III. UNCERTAINTIES AND ROBUST CONTROL

No mathematical model can exactly describe a physical
system. This modeling error can dramatically affect the perfor-
mance of a control system. The difference between the actual
system and its mathematical model (used to develop controller
designs) is known as model uncertainty. The two types of
uncertainty which are taken into consideration while designing
a robust controller are:
1) Modeling Errors: These arise due to inaccurate dynamics

in the model of the plant (particularly at high frequencies).
2) Unmodeled Dynamics: These arise due to neglected or un-

known dynamics of the plant.

Fig. 5. Control configuration for -synthesis.

These perturbations are usually lumped together in a structured
uncertainty description , where is block diag-
onal (see Fig. 5).
Given this setup the system robustness can be quantified via

the smallest structured which makes the matrix sin-
gular at any given frequency. Computing this quantity over all
frequency enables one to find the smallest destabilizing pertur-
bation, and hence the system robustness. This metric is termed
the structured singular value (denoted ), which stated mathe-
matically is defined for a matrix as (see [16]):

(1)

where is the lower linear fractional transformation (LFT) of
and , and is block diagonal.

, and -synthesis controllers are all designed based on
optimal/robust control theory. Among them, only -synthesis
control is specifically designed to cope with system uncertain-
ties. Note that this robust control approach yields a powerful
tool for synthesizing multivariable controllers with high levels
of robustness (to uncertainty) and performance (tracking, dis-
turbance and noise rejection) [17]. The uncertainties considered
in this robust control approach are described via norms bounds
[18], but these mathematical descriptions can be related back to
classical measures (e.g., gain and phase margins) [16], [19].
Note that -synthesis controllers are designed so as to de-

liver both robust stability and robust performance. Of course
-synthesis sacrifices some nominal performance (as compared

to optimal control methods like ) but provides robustness
to model uncertainties. Robust control theory has been studied
extensively in the literature, and we refer interested readers
to [16] and [19] for detailed information. The Robust Control
Toolbox™ from Matlab™ is used in this paper for design,
analysis and simulation purposes. Finally, note that we utilize
conventional PID control for comparison purposes.

IV. CONTROLLER DESIGN

We use the D-K iteration approach for -synthesis controller
design. This aims to deliver a closed-loop system with opti-
mized performance in the presence of disturbance signals whilst
at the same time retaining robustness to system model uncer-
tainties. In order to precisely specify the robustness and perfor-
mance criteria, the first step is to decide upon the design system
interconnection [20].



560 IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 2, MARCH 2015

Fig. 6. Plant with model uncertainties for synthesis design.

A. Uncertainty in the System
Nominal models of the small power system and battery are

shown in Figs. 2 and 3.Multiplicativemodel uncertainties of 5%
and 3% are added to model blocks ‘Diesel’ and ‘Rotating Mass
and Load’ to represent modeling errors as shown in Fig. 6. Un-
modeled high frequency dynamics can also be included as addi-
tional perturbations [21], but we do not do so here.Measurement
noise is added to the frequency deviation and SoC signals. In
addition, control signal penalty weights are also included. Note
that there are three control signals; the first one is designated for
low frequency diesel engine control, the second one is assigned
for high frequency battery control, and the third one is used for
maintaining the battery at 50% of its SoC. These signals are sep-
arately penalized (because of different desired constraints).

B. Disturbance Signals on the System
Two major disturbances in the system arise from variations

in load and renewable source (WTG) generation. Note that load
draws power from the system, but WTG injects power into the
system. However, since we do not assume the WTG output to
be under our control, for controller design purposes we simply
combine the two into a single “disturbance” at the same sum-
ming junction. In addition, there is always sensor noise in all
measurements, and these are also included as disturbance sig-
nals [17]. In our system, SoC sensor and speed sensor noises
are considered.

C. Penalty Signals
The signals we choose to penalize in the design intercon-

nection effectively specify the performance criteria for the
controller design optimization process. In order to minimize
the system frequency deviation, the first penalized signal is
the output . In order to limit excessive usage of the storage
system, its SoC signal is penalized as well. In addition, a
penalty is always applied on all control signals to limit the
control authority [17]. Here, the control signals acting on the
diesel engine and battery are penalized.

D. Performance Weights Selection
The choice of performance weights to be used in the con-

troller is more difficult. The net load mentioned in Section IV-B,
which needs to be fulfilled by some combination of the gener-

ator and battery, is due to both the physical load and the WTG
output. The net load profile exhibits both high and low fre-
quency variations. The low frequency load variations are taken
care of by the diesel generator. The battery has the ability to
deliver/absorb power to/from the system more quickly (via dis-
charge/charge), and so it is used to damp the high frequency
variations. Hence our controller profile needs to utilize primarily
the diesel engine at low frequency, primarily the battery (dis-
charge/charge) at high frequency, but then also monitor the bat-
tery SoC (which is a low frequency signal) and avoid draining/
overcharging it. Fourier Transform analysis is applied to the
load and WTG output. The frequency spectrum analysis shows
that the notable amplitudes of load profile are below 6 rad/s. The
WTG output spectrum shows that its amplitude is widely spread
between 6 rad/s to 60 rad/s.
The weights are selected in such a way as to reflect the above

frequency content of the (desired) signals, with weighting func-
tions active in the desired frequency ranges. If the constraint is
to be imposed across all frequency, then a constant gain is used.
Hence, the weights on the control error signals for generator
( ), battery ( ) and SoC ( ) are selected as:

(2)

(3)

(4)

Fig. 7 gives the bode plot of the control error signals. Since
the generator provides the lower frequency load demands, its
penalty function has larger amplitude in the lower frequency
range between and as shown in blue.
The battery fulfills the power demands for the higher frequency
range. Its error signal weight has its largest amplitude at the even
lower frequency range from to , but then
remains significant all the way out to very high frequencies, as
shown in green. The SoC error signal is not penalized during the
lower frequency range where the battery is less active, but the
penalty kicks in at higher frequencies. In other words, SoC is
carefully controlled during the high frequency range where the
battery is being rapidly charged and discharged, so as to avoid
saturation events.
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Fig. 7. Bode plot of performance weights.

The weights on the control input are selected in the same way.
The control weight for controlling the diesel engine ( ) and
battery ( ) are given as:

(5)

(6)

The design weight functions for the control signals are shown
in Fig. 8. As the figure shows, during the high frequency range
the generator control signal is penalized, since we do not wish
the generator control signal to be active in this range, but rather
let the battery deal with small fast transients. On the other hand,
the battery control signal weight amplitude is heavily penal-
ized in the low frequency range, since we do not wish the bat-
tery to try to handle large slow transients that are better han-
dled by the generator. In this way our MIMO controller design
approach will yield a closed-loop design where each compo-
nent primarily handles the (frequency) region it is best suited
for, with an appropriate combination of resources dealing with
the transition (frequency) region. Weights on load ( ) and
WTG ( ) outputs are also applied, where and

. The selected weights with model uncertainties are
shown in Fig. 6 along with the interconnection structure.

E. Design of -synthesis Controller
Using the system uncertainties presented in Section IV-A,

and weights we have developed in Section IV-D, the intercon-
nection state-space model can be built using the Robust Con-
trol Toolbox™. The structured uncertainty description spec-
ifies the perturbed plant model, and it is normalized so that

[22].
The given Simulink model in Fig. 6 is first linearized with an

operating point of 0. As shown in Fig. 6, there are 12 first order
transfer functions, which indicates that the system has 12 states.
It is to be noted that the system already contains dynamic uncer-
tainties via weighting functions, which set the robustness spec-
ification. The state-space representation (matrices A, B, C, D)

Fig. 8. Bode plot of control signal weights.

of the linearized open-loop plant model (P in Fig. 5) is obtained
using the MATLAB™ command ‘linmod’ (applied to Fig. 6),
resulting in a system of order 12.
The block-diagonal uncertainty structure , as shown in

Fig. 5, is then obtained as an uncertain linear time-invariant
object. The Linear Fractional Transformation (LFT) of the lin-
earized uncertain plant (P) and the block diagonal uncertainty
structure ( ) is taken to obtain the weighted, uncertain control
design interconnection model. We use the DK-iteration algo-
rithm for -synthesis in Matlab's Robust Control Toolbox™ to
design a -optimal robust controller K for our uncertain model.
The iterative algorithm combines -synthesis and -anal-
ysis to deliver both robustness to uncertainties and optimized
performance. The designed robust controller is seen to be of
order 12 (same as the design interconnect). This represents
a low complexity controller which is easily implemented for
real-time operation on modern hardware.
The PID controller is tuned based on the nominal plant. This

means that robustness to uncertainties is not specifically ad-
dressed, although of course classical control tuning approaches
(utilizing rules for gain and phase margins etc.) implicitly try to
cope with uncertainty. We utilize the Ziegler-Nichols method
for PID tuning, and the PID comparison case is implemented
with 100% battery attached.

V. SIMULATION AND DISCUSSION

In this section we show a series of simulation results for the
-synthesis and PID controllers. The load and WTG output de-

viation in pu ( and ) are shown in Fig. 9. is about
30% of .
Fig. 10 shows the frequency deviation ( ) under control

for 500 s. In this simulation, no constraints were added to the
battery, which can deliver its maximum rated power. It can be
seen that the peak is about , occurring at 307 s.
From Fig. 9, we can see that from 240 s to 300 s, the load de-

creases and WTG output increases, which implies there is sur-
plus power in the system. This causes the system frequency to
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Fig. 9. Load and WTG output variations.

Fig. 10. Frequency deviation with control and maximum battery power.

increase and so will decrease, where is the nom-
inal frequency. The load and WTG output variations have steep
transients in this time interval, and the load and output power
of each power source are compared in Fig. 11, which shows
individual generation/load power deviations from the nominal
value. For instance, as shown in Fig. 11, at 248 s the generator
increases its output power by 7% to match the 5% increase in
load and 2% decrease in wind generation. The generator output
follows the net load (combined load and WTG) variations and
provides the major portion of power. The battery is reacting to
the high frequency transients while keeping its SoC around the
desired operating point.
At 307 s, load increases by 0.1 pu andWTG output decreases

by 0.02 pu at the very same time. Hence the biggest load tran-
sient occurs as shown in Fig. 12, which shows the frequency
variation under control for a variety of different battery sce-
narios. Fig. 13 shows how the power varies for load, gener-
ator and wind with no battery system attached. By comparing

Fig. 11. Power variations with maximum rated battery power.

Fig. 12. Frequency deviation with control for various battery sizes.

Figs. 11 and 13, one can see that the latter has more high fre-
quency harmonics on the generator power variation (in green).
The reason is that, in this case, there is no battery, and so the
generator is forced to compensate the high frequency load/wind
power variations. In the former case (Fig. 11), the high fre-
quency components in the system are being smoothed by the
battery.
Without the help of a storage system, high frequency net load

transients must be taken care of by the generators. However,
the diesel engine has much slower dynamics (larger time con-
stant) than a battery. It cannot react as quickly, and so the mag-
nitude of increases. As shown in Fig. 12, reaches almost
3% (with no battery) which is unacceptable. In general, for mi-
crogrids, should be limited to within 1%, and the recovery
time limited to couple of seconds. Otherwise most conventional
breakers will trip, with the subsequent possibility of cascade ef-
fects.
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Fig. 13. Power variation without attached battery.

Fig. 14. Maximum frequency deviation summary (largest 5) for control with
various battery sizes.

The results of simulating a variety of battery scenarios under
control are summarized in Fig. 14. This plot shows the magni-

tudes of the 5 largest absolute frequency deviations seen in each
simulation run.
Fig. 14 shows that for this particular load and WTG output,

in order to limit the to within 1%, the battery needs to be
operated to at least 50% of its maximum rated output power. If
not, breakers will trip and start disconnecting the loads. We can
also see from this figure that with the decrease of battery max-
imum output power, the system frequency deviation increases,
since the slower diesel generator (longer time delay) now has to
handle fast transients (and it is not as effective as the battery in
doing so).
However, it can also be seen from Figs. 12 and 14 that even a

battery with very limited power output can still reduce sig-
nificantly. Even when the output power of the battery is limited
to 3% of its maximum rated output, it still limits the maximum

to within 1.4%, and all other variations are kept within 1%

Fig. 15. Frequency deviations comparison between synthesis and PID with
full battery attached.

(as compared to nearly 3%maximum for the systemwithout
any battery).
As we mentioned in the previous section, the PID controller

is tuned without specific consideration of uncertainties (unmod-
eled dynamics and/or disturbance signals). Hence, when the PID
controller is used for controlling the plant with uncertain load
and WTG variation (even with the full battery is attached), a
bigger frequency deviation (1.1%) takes place. As shown in
Fig. 15, when full battery is attached for both cases, the syn-
thesis controller has much better performance than the PID-
based method, and it significantly reduces the peak frequency
deviations.
In order to specifically examine system robustness,

Fig. 16 shows the system frequency deviation when 10%model
uncertainty is added to the diesel engine and rotating mass
models, and 10% noise is added to all measurements. Of course
disturbances arising from the load and WTG variation are also
present as before. It can be seen that the PID controller can
no longer maintain acceptable system performance. However,
the -synthesis controller can still provide satisfactory perfor-
mances despite these significant uncertainties.
Note that although synthesis design is optimization-based,

it is still flexible, and the engineer can modify the design as
desired by appropriate weight selection. By way of illustra-
tion, note that in our design the battery control signal penalty
weight was chosen as: .
Now, consider choosing a new weight function as:

. Note that this changes the cutoff
frequency from to . Hence the modified
weight/design will require the battery to react to all frequency
deviation signals higher than (versus
in the original design). Under the modified conditions, the
battery operation range interferences with the diesel engine
functioning range, where larger disturbances occur. This can
drive the battery into saturation, whilst not allowing the engine
to running at its optimal operating point. As a result, poorer
performance is obtained when the modified weight function is
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Fig. 16. Frequency deviations comparison between -synthesis and PID with
10% model uncertainty and measurement noise.

Fig. 17. Frequency deviations comparison with different weights on battery
control signal (under 10% model uncertainty and measurement noise).

used in the controller design, as illustrated by the sluggish (per-
turbed) simulation shown in Fig. 17. Our synthesis controller
design was the result of a careful weight selection process, to
achieve the desired robust performance.
To summarize, these simulations show us several things. First

of all, comparing Figs. 11 and 13, one can see that the bat-
tery is affecting the high frequency harmonics of the generator
power, which is necessary to cope with the high variability of
the net load (which includes the WTG). However the battery is
having negligible effect on the overall amount of power the gen-
erator supplies. This is crucial since we can only consider rela-
tively small batteries for practical microgrids, where the gener-
ator power is always supplying the vast bulk of the net load.
However from Figs. 12 and 14, one can see that small

amounts of battery storage, coupled with an advanced MIMO
control algorithm, can still deliver adequate performance
and maintain frequency stability. Finally, it is apparent from

Fig. 15 that conventional (PID) control cannot deliver that same
level of performance for the same size battery, despite our best
efforts to tune it correctly. One can see from the figure that,
although it delivers decent performance for much of the time,
there are still occasional large frequency deviations for the PID
control which are unacceptable, and are avoided by the more
sophisticated MIMO controller design.

VI. CONCLUSION
In this paper, we have shown that by combining a small bat-

tery with a sophisticated robust control algorithm, one can sig-
nificantly reduce system frequency deviation in a microgrid.
In other words, specifying a certain allowable frequency de-
viation, the robust control approach allows us to deliver that
performance level whilst utilizing a smaller battery. Since bat-
tery-based storage systems are very expensive, this is a signifi-
cant advantage.
This new approach is much more robust, and has better per-

formance, as compared to conventional PID control. Our ap-
proach utilizes -synthesis for the controller design, and careful
weight selection is crucial, to enforce good tradeoffs in the con-
troller. During the controller design process, since the model un-
certainties and system performances are considered at the same
time, system robustness and performance is well balanced. The
battery based storage system is constantly charged or discharged
to deal with fast transients. At the same time it is necessary to
keep the SoC around 50%, which the MIMO controller does.
Conventional generators are slower, and deliver the bulk

of the power while coping with large load variations. The
resulting closed-loop microgrid system does not control these
devices (battery and generator) independently, but rather
simultaneously employs the generator to handle large slow
load transients, while utilizing the battery to smooth out fast
transients. In this way the overall system performance of the
microgrid is optimized.
Finally we note that this paper focusses on control of real

power and frequency. In future work, we plan to extend the ap-
plication of these tools to control of reactive power and voltage
in microgrids.
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